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Abstract

We calculate the geometrical effect of a nonzero bunch length on the luminosity and the beam-beam
parameters in the general asymmetric case. We assume that the bunches are three-dimensional gaussian
colliding head-on and on-axis; however, the collision point may be displaced longitudinally from the
nominal IP. The four beta-functions and the six beam sizes are allowed to have arbitrary values. With
these formulas we attempt a limited analytic understanding of the multiparticle tracking simulations
that have been carried out for the proposed SLAC/LBL/LLNL B factory [1] when parasitic crossings are
ignored. We discuss the electromagnetic pinching effect only qualitatively. We conclude the following: (a)
the asymmetric formulas reduce smoothly to the symmetric ones and there is no significant qualitative
difference between the two cases; (b) the geometrical reduction in luminosity is ∼ 6% relative to the
zero-bunch-length (nominal) value and it is probably compensated (or overcompensated) by the pinching
effect; (c) only the vertical beam-beam parameter of the LER is significantly altered by the hourglass
effect: the geometrical enhancement of the central positron’s ξy is ∼ 10% relative to the nominal value,
and it is probably made larger by the pinching effect; and (d) the vertical beam-beam parameters of the
positrons at the head or tail of the bunch can have instantaneous values much larger than nominal.

1 Introduction.

The desire to study the B meson system in detail has led several laboratories to propose designs for asym-
metric high-luminosity e+e− colliders [1]. Typically the vertical beta-functions are of order ∼> 1 cm, which is
comparable to the bunch lengths. Because the beta-function modulates significantly the transverse bunch size
over the effective region of the collision, the luminosity is degraded relative to the zero-bunch-length limit.
This modulation also enhances or decreases the beam-beam parameters. This is the so-called “hourglass
effect,” which is purely geometrical in nature.

All the calculations presented here are strictly static in the sense that no dynamical variation of any sort
is taken into account. In particular, the emittances (hence the transverse beam sizes σ∗x± and σ∗y± at the IP)
are taken as a given input. Similarly, the longitudinal displacement z of a given particle from the center of
its own bunch is assumed independent of time, as are the displacements ∆± of the bunch centers from the
nominal IP at the time of collision (in practice, or in realistic multiparticle tracking simulations, the beam
sizes normally do reach a constant size, but z oscillates sinusoidally due to synchrotron motion, and the ∆±
may oscillate and/or may jitter).

The proposed designs invoke to a greater or lesser degree a “transparency condition” by virtue of which
the beam sizes are pairwise equal [2]. Because of the beam-beam interaction, however, the transparency
symmetry is inevitably broken, and the beams become different in size at least to some degree. Expressions
available in the literature [3–5] for the hourglass factors for the luminosity and beam-beam parameters
are applicable to single-ring colliders and therefore assume some sort of relationship between the beam
parameters, such as σx+ = σx−, σy+ = σy−, σz+ = σz−, β∗y+ = β∗y− and β∗x+ = β∗x− À β∗y+ (the suffixes +
and − refer to the e+ and e− beams, respectively, and the superscript ∗ refers to the interaction point). In this
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note we provide generalizations that do not assume any of these relationships, and are, therefore, applicable
to the most general asymmetric case. The hourglass factors are expressed in terms of one-dimensional
integrals that are easy to evaluate. In the case when β∗x+ and β∗x− are much greater than their vertical
counterparts, the expressions are given in terms of modified Bessel functions. In the case of transparent
round beams, they are given in terms of the complementary error function.

The multiparticle tracking simulations that have been carried out for the proposed SLAC/LBL/LLNL B
factory [1] are “strong-strong” in nature, in which both beams evolve dynamically under their mutual influ-
ence. The simulated bunches are three-dimensional, so that nonzero bunch length effects (both geometrical
and dynamical) are indeed included. These simulations show that the positron (LER) beam tends to blow
up in the vertical direction, and slightly contract or expand in the horizontal direction. The electron (HER)
beam tends to slightly contract or expand in both directions. Valuable as they are, multiparticle simulations
do not provide much insight into the origin of this dynamics. We attempt here a modest and qualitative
analytic understanding of these behaviors for the case in which parasitic collisions are ignored. We calculate
a 5.5% geometrical reduction in luminosity and a 9.3% geometrical enhancement of the central positron’s
vertical beam-beam parameter relative to the zero-bunch-length limits.

In addition to the hourglass effect there is also the “pinching,” or “disruption” effect caused by the
electromagnetic fields during the collision [6, 7]. We present qualitative arguments that this pinching effect is
probably small and favorable for the luminosity, in that it tends to overcome the geometrical reduction. This
is consistent with the tracking simulation results in the case when there is no significant LER vertical blowup.
However, we show that positrons at the head or tail of the bunch have vertical beam-beam parameters
significantly larger than nominal. This is in contrast with the positron’s horizontal beam-beam parameter,
and both vertical and horizontal parameters for the electrons, all of which remain relatively unchanged from
nominal for most particles. The pinching effect is possibly detrimental for these particles.

It is probably interesting that the enhancement of the positron’s vertical beam-beam parameter, as shown
in this note, seems correlated with the positron’s vertical blowup seen in the simulations. We do not attempt
here to pin down the possible connection. Because the primary objective of the simulations has so far been
the study of the dynamics of the beam core, all macroparticles have been confined longitudinally to the
region |z| < 2σz around the bunch center. For larger values of |z| the relatively large value of the vertical
beam-beam parameter, as shown below, implies a potentially significant effect on the dynamics of the bunch
tails. This would probably affect the beam lifetime more than the short-term average luminosity.

2 Expression for the luminosity.

Consider two bunches, one of electrons and one of positrons, whose particle densities are ρ− and ρ+, respec-
tively. We assume that they are normalized to the number of particles in each bunch,

∫
dxdyds ρ±(x, y, s) = N± (2.1)

If these two bunches move in equal and opposite directions with speeds v+ and v− then the luminosity for
the collision is given by

L = (v+ + v−)

∫
dtdxdyds ρ+(x, y, s− v+t)ρ−(x, y, s+ v−t) (2.2)

where the integral extends from −∞ to +∞ for all four variables of integration. Note that this expression
has dimensions of length−2 rather than the usual length−2time−1. This is because (2.2) is the luminosity
per bunch collision, not per unit time. The usual expression for the luminosity applicable to the periodic
collision of like bunches at a given interaction point is obtained by multiplying (2.2) by the bunch collision
frequency.

The above expression is valid for arbitrary bunch densities, as long as the two bunches are moving along
in equal but opposite directions. In particular, if the densities have some symmetry axis defining a center in
the transverse plane, as in the usual case of bunches of elliptical cross sections, Eq. (2.2) is valid even if the
bunches collide off-axis.
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We now specialize to the case of tri-gaussian bunches moving towards each other with speed c,

ρ±(x, y, s∓ ct) =

N± exp

(
− x2

2σ2
x±
− y2

2σ2
y±
− (s∓ ct)2

2σ2
z±

)

(2π)3/2σx±σy±σz±
(2.3)

Since the bunch centers obey s = ±ct, the time t = 0 is the central collision time. We assume that the
transverse rms bunch sizes σx± and σy± depend on the path length s, but that the longitudinal rms sizes
σz± are constant. Then (2.2) yields

L =
N+N−

π
√

2π
√
σ2
z+ + σ2

z−

∞∫

−∞

ds

exp

(
− 2s2

σ2
z+ + σ2

z−

)

√
(σ2
x+ + σ2

x−)(σ2
y+ + σ2

y−)
(2.4)

In the special case in which the transverse rms bunch sizes are constant or do not vary significantly over
a distance (σ2

z+ + σ2
z−)1/2, we obtain from (2.4) the familiar short-bunch expression for the luminosity,

L = L0 ≡
N+N−

2π
√

(σ∗2x+ + σ∗2x−)(σ∗2y+ + σ∗2y−)
(2.5)

where the superscript ∗ refers to the collision point, s = 0.

2.1 Luminosity reduction factor for drifts.

Let us assume now that the bunches collide in a drift section with zero dispersion, and that the interaction
point is a symmetry point of the lattice. We assume also that the bunches collide at this point with no
longitudinal displacement. Then the rms bunch sizes vary away from the collision point according to

σ2
x± = σ∗2x± ×

(
1 +

s2

β∗2x±

)
(2.6)

with a corresponding expression for σ2
y±. From (2.4) we obtain, after a straighforward scaling of the inte-

gration variable s and factoring out the nominal expression (2.5), the reduction factor

R(ux, uy) ≡ LL0
=

∞∫

−∞

du√
π

exp(−u2)√
(1 + u2/u2

x)(1 + u2/u2
y)

(2.7)

where u is a dummy integration variable proportional to s, and ux is defined by

u2
x =

2(σ∗2x+ + σ∗2x−)

(σ2
z+ + σ2

z−)
(
σ∗2x+/β

∗2
x+ + σ∗2x−/β

∗2
x−
) (2.8)

with a corresponding expression for uy. Eqs. (2.7) and (2.8) constitute the basic result of this section.
We exhibit R(ux, uy) plotted vs. uy for selected values of ux in Fig. 1. The integral was performed with
Simpson’s algorithm (program HOURGLASS LUM.F).

The parameters ux and uy measure the relative sizes of the beta-functions to beam lengths. For the
important transparent case in which the beam sizes are pairwise equal, i.e., σ∗x+ = σ∗x− and σ∗y+ = σ∗y−,
ux and uy lose their explicit dependence on transverse beam size. If, in addition, σz+ = σz−, then these
parameters reduce to

u2
x =

2β∗2x+β
∗2
x−

σ2
z

(
β∗2x+ + β∗2x−

)

u2
y =

2β∗2y+β
∗2
y−

σ2
z

(
β∗2y+ + β∗2y−

)





if σx+ = σx−, σy+ = σy−, and σz+ = σz− (2.9)
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2.2 Special cases for the luminosity reduction factor.

In some limiting cases one can find useful analytic expressions for R(ux, uy). Firstly, when both bunches
have zero length, one recovers the correct result from (2.7) by setting ux = uy =∞,

R(∞,∞) = 1 (2.10)

while it is easy to see that R < 1 for all other cases. In the limit when both ux and uy are large, we obtain
a first correction to this asymptotic limit,

R(ux, uy) = 1− 1

4

(
1

u2
x

+
1

u2
y

)
+ · · · (2.11)

Of special interest is the case when both beams are flat, with bunch lengths comparable to the vertical
beta functions at the IP and horizontal sizes much larger than the vertical. In this case ux À 1 and we
obtain, upon making the change of variables u→ uy sinh(u/2) and setting ux =∞,

R(∞, uy) =

∞∫

−∞

du√
π

e−u
2

√
1 + u2/u2

y

=
uy√
π
eu

2
y/2K0(u2

y/2) (2.12)

where K0 is a Bessel function. This result is of similar form as Ivanov et al.’s [4], but is of more general
validity because it does not assume β∗y+ = β∗y− or σz+ = σz− or σ∗y+ = σ∗y−. In the limiting cases uy → 0
and uy →∞ we obtain

R(∞, uy) =





− uy√
π

(
1 + 1

2u
2
y

) (
γ + log(u2

y/4)
)

+O(u4
y), uy → 0

1− 1

4u2
y

+O(u−4
y ), uy →∞

(2.13)

where γ is here Euler’s constant. Fig. 2 depicts Eq. (2.12) along with these two asymptotic expressions.
Also of interest is the case when ux = uy, which includes the transparent round-beam case. In this case

the luminosity reduction factor (2.7) becomes

R(ux, ux) =

∞∫

−∞

du√
π

e−u
2

1 + u2/u2
x

=
√
π ux e

u2
xerfc(ux) (2.14)

where erfc(x) is the complementary error function [8]. In the limiting cases ux → 0 and ux →∞ we obtain

R(ux, ux) =





√
π ux

(
1− ux√

π
+ u2

x

)
+O(u4

x), ux → 0

1− 1

2u2
x

+O(u−4
x ), ux →∞

(2.15)

Eq. (2.14) is plotted in Fig. 3 along with these limiting forms.

3 The hourglass effect for the beam-beam parameters.

In this section we calculate, in first order in perturbation theory, the effect that the modulation of the
beta-function has on the nominal beam-beam parameters ξ. As before, we consider only relativistic, upright,
tri-gaussian bunches colliding head-on and on-axis with no longitudinal displacement from the nominal
collision point, i.e., ∆+ = ∆− = 0 (see Fig. 4).

We consider only the “worst case,” corresponding to particles infinitesimally close to the axis of one
bunch passing through the opposing bunch. These are the particles that experience the largest beam-beam
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effect. The integrated strength of the beam-beam kick of the particle at the center of the bunch is what
is usually referred to as the beam-beam parameter ξ of that beam (there are, of course, four beam-beam
parameters altogether, two for each beam). Because we calculate ξ only to first order, we assume that the
particle in question follows a straight line trajectory with constant speed c.

To fix ideas, we assume that the positrons move to the right and the electrons to the left with distributions
given by (2.3). We focus our attention on a single particle, say a positron, as it passes through the opposing
electron bunch. This particle has x ' y ' 0 and is displaced longitudinally by a finite distance z from the
center of its own bunch, as sketched in Fig. 4. We assume that z does not vary during the collision process,
which is a very good approximation in practice. In the relativistic limit it is easy to show from Maxwell’s
equations that the electric and magnetic field in the lab frame produced by the electrons, with distribution
(2.3), are given by

E− =
−2eN− (ix/σx− + j y/σy−)√

2π σz− (σx− + σy−)
exp

(
−(s+ ct)2/2σ2

z−
)

(3.1a)

B− =
v−
c
×E− (3.1b)

where the electron charge is taken to be −e. The positron in question obeys s = ct + z, and the force it
experiences is, in the relativistic limit,

F+ = e
(
E− +

v+

c
×B−

)
= 2eE−|ct=s−z (3.2)

As a result of this beam-beam collision the vertical focusing function of the positron is shifted by an
amount

∆Ky+(s) = − Fy+/y

mc2γ+
(3.3)

with a corresponding expression for the horizontal counterpart. Here mc2γ+ is the positron energy. The
corresponding integrated beam-beam kick strength is, in first order,

ξy+(z) =
1

4π

∫
ds βy+(s)∆Ky+(s) =

r0N−
π
√

2πγ+σz−

∫
ds

βy+(s) e−(2s−z)2/2σ2
z−

σy−(σx− + σy−)
(3.4)

where r0 is the classical electron radius, r0 = e2/mc2. The expressions for the remaining three beam-beam
parameters ξx+, ξx− and ξy− are obtained from (3.4) by the obvious substitutions. Eq. (3.4) is the basic
result of this section.1

Because of this beam-beam interaction, the positron’s tune ν is shifted by an amount ∆ν which is found,
in first order in ξ, from the equation cos(2π(ν+ ∆ν)) = cos 2πν− 2πξ sin 2πν (four separate equations apply
for each of the four tune shifts). If ν is not too close to an integer or half-integer, one finds the familiar
result ∆ν ' ξ. If the bunch length σz− is much shorter than the characteristic length of variation of the
transverse sizes and the beta-function, Eq. (3.4) yields the familiar result for the particle at the center of the
bunch (z = 0)

ξ0y+ =
r0N−β∗y+

2πγ+σ∗y−(σ∗x− + σ∗y−)
(3.5)

3.1 The beam-beam aggravating factor for drift sections.

We now specialize the calculation to the case of a dispersionless drift section, as appropriate to an interaction
region. The beta-functions and the square of the transverse beam sizes vary with s according to Eq. (2.6).
By a straightforward rescaling2 of the variable s and factoring out the zero-bunch length expression (3.5),

1For Eq. (3.4) to be applicable as written to the electron beam, one must adopt the convention that z > 0 represents the
tail, not the head, of the e− bunch.

2The rescaling used here is different from the one used in the luminosity reduction factor; however, we still call u the resulting
dummy integration variable.
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we arrive at a result called the “aggravating factor,” [3],

Ry+(z) ≡ ξy+(z)

ξ0y+
=

∞∫

−∞

du√
π

(1 + u2/u2
1) exp(−(u− u0)2)

√
1 + u2/u2

2

(
v
√

1 + u2/u2
2 + h

√
1 + u2/u2

3

) (3.6)

where

h =
σ∗x−

σ∗x− + σ∗y−
, v =

σ∗y−
σ∗x− + σ∗y−

u0 =
z√

2σz−
, u1 =

√
2β∗y+

σz−
, u2 =

√
2β∗y−
σz−

, u3 =

√
2β∗x−
σz−

(3.7)

It should be noted that, depending on the relative size of the beta-functions and beam sizes at the
interaction point, the beam-beam enhancement factors can be > 1 or < 1, as opposed to the luminosity
reduction factor, which is always < 1.

The expressions for Rx+, Rx− and Ry− are obtained from (3.6) by the replacements x↔ y and/or +↔ −
in h, v and the ui’s.

3.2 Special cases for the aggravating factor at z = 0.

We now consider only the particle at the center of the bunch (z = 0).

3.2.1 Pairwise-equal β∗’s.

The first special case we consider arises when β∗x+ = β∗x− and β∗y+ = β∗y−, which is a condition that might
be chosen as part of a specific transparent-symmetric design.3 In this case u1 = u2 for both x and y, and
the enhancement factor becomes

Ry+(0) =

∞∫

−∞

du√
π

√
1 + u2/u2

2 exp(−u2)

v
√

1 + u2/u2
2 + h

√
1 + u2/u2

3

(3.8)

while Rx+(0) is obtained, in this case, by replacing u2 → u3 in the numerator and leaving the denominator
unchanged. It is easy to see, then, that

hRx+(0) + vRy+(0) = 1 (3.9)

Given that h+ v = 1, this implies that either Rx+(0) > 1, or Ry+(0) > 1, or Rx+(0) = Ry+(0) = 1.

3.2.2 Flat beams.

The second special case we consider is that of flat beams. We assume that σx+ À σy+, σx− À σy−,
β∗x+ À β∗y+ and β∗x− À β∗y−. In this case we find

Rx+(0) ' Rx−(0) ' 1 (3.10)

and

Ry+(0) '
∞∫

−∞

du√
π

(1 + u2/u2
1) exp(−u2)√

1 + u2/u2
2

=
u2

2
√
π
eu

2
2/2
[
(2− ρ)K0(u2

2/2) + ρK1(u2
2/2)

]
(3.11)

where

ρ ≡
(
u2

u1

)2

=

(
β∗y−
β∗y+

)2

(3.12)

and K0, K1 are Bessel functions. In this special case the expression for Ry−(0) is obtained from (3.11) by
the exchange u1 ↔ u2.

3This equality of the beta-bunctions is not required, however, by the usual dictates of transparency symmetry; see Ref. 2.
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3.2.3 βx = βy.

A third special case arises when u2 = u3 for both beams. This implies that β∗x+ = β∗y+ and β∗x− = β∗y−.
These equalities might be chosen, for example, as part of a round-beam design. We allow, however, for the
possibility that β∗x+ 6= β∗x− and we assume nothing about the emittances, hence the six rms beam sizes σ
might all be different. Since h+v = 1, the expression for Ry+(0), Eq. (3.6), becomes, with no approximation,

Rx+(0) = Ry+(0) =

∞∫

−∞

du√
π

1 + u2/u2
1

1 + u2/u2
2

exp(−u2) = ρ+ (1− ρ)
√
π u2 e

u2
2 erfc(u2) (3.13)

where ρ is the same as above, Eq. (3.12). The expression for Rx−(0) (which is equal to Ry−(0)) is obtained
from (3.13) by the exchange u1 ↔ u2.

Finally we note, as a special case of the above, that if all four beta-functions are equal, β∗x+ = β∗y+ =
β∗x− = β∗y−, then u1 = u2 = u3 and we obtain

Rx+(0) = Ry+(0) = Rx−(0) = Ry−(0) = 1 (3.14)

regardless of the transverse or longitudinal beam sizes. This result should be obvious from Eq. (3.4); it is
noteworthy because it allows the possibility to eliminate the hourglass effect on the beam-beam parameters,
should this be considered a problem (however, this possibility seems natural only for a round-beam design,
such as for a proton collider).

3.3 The aggravating factor for z 6= 0.

For particles away from the center of the bunch, which have z 6= 0, the aggravating factor does not seem
to be expressible in terms of special functions in the special cases considered above. However, three useful
properties can be easily seen from Eq. (3.6). The first property is the symmetry

Ry+(z) = Ry+(−z), or ξy+(z) = ξy+(−z) (3.15)

which is also true of the remaining three aggravating factors (or beam-beam parameters). Physically, this
means that the particles at the head of the bunch suffer the same beam-beam tune shift as the particles at
the tail of the bunch, provided they are at the same distance from the center. This result can be understood
from time-reversal symmetry, which is a valid symmetry on account of the assumed beta-function symmetry
about the interaction point, and the assumed lack of bunch distortion. Thus, if one imagines the collision
process run backwards in time, a particle at the head of the bunch becomes a particle at the tail of the bunch.
Time-reversal symmetry implies, therefore, that these two particles experience exactly the same forces, and
hence exactly the same beam-beam tune shifts.

A second mathematical property of the aggravating factor is that it saturates to a limit when z → ∞.
The limit is easily shown to be

lim
z→∞

Ry+(z) =
u2

2u3

u2
1(vu3 + hu2)

(3.16)

This limit is sensibly reached when u0 À u1, u2, u3 corresponding to particles with |z| À β∗, where β∗

represents here the largest of the four beta-functions at the interaction point, hence this limit is not applicable
to any of the existing B factory designs. The expressions for the remaining three factors are obtained by the
obvious substitutions on both sides of (3.16).

Finally we note that, just as in the z = 0 case, if all four beta-functions are equal, we obtain

Rx+(z) = Ry+(z) = Rx−(z) = Ry−(z) = 1 (3.17)

for all values of z. This follows straightforwardly from Eq. (3.4).
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Table 1: Nominal parameters for APIARY 6.3–D.

LER (e+) HER (e−)
σ∗x [µm] 186 186
σ∗y [µm] 7.35 7.35
σz [cm] 1 1
β∗x [cm] 37.5 75
β∗y [cm] 1.5 3
ξ0x 0.03 0.03
ξ0y 0.03 0.03

4 Numerical application to the SLAC/LBL/LLNL B factory.

From the proposed SLAC/LBL/LLNL B factory conceptual design report [1] we assume parameter values
as listed in Table 1.

From Eq. (2.8) we obtain ux = 47.43 and uy = 1.897. Because ux is large enough, the approximate
expression (2.12) is valid with an estimated accuracy better than 1 part in 1,000. We obtain, either from
(2.7) or (2.12) [8],

R = 0.945 (4.1)

which implies a 5.5% reduction in luminosity relative to the zero-bunch-length calculation.
For the beam-beam aggravating factors for the particle at the bunch center we obtain, from (3.6),

Ry+(0) = 1.093, Ry−(0) = 0.977
Rx+(0) = 1.000, Rx−(0) = 0.998

(4.2)

which shows, in particular, an enhancement of 9.3% for the nominal vertical beam-beam parameter of the
positron beam.

For particles away from the center of the bunch, Ry+ grows fairly quickly as the distance increases. Fig. 5
shows ξy+ as a function of the positron’s distance away from the center of the bunch. ξy+ grows to ∼ 0.1 for
a 6-σz particle, and reaches 0.18 at z = 10σz. The remaining three aggravating factors deviate significantly
from unity only for z > 10σz. Fig. 6 shows all four aggravating factors as a function of the particle distance
away from the center of the bunch. We have deliberately extended the horizontal scale up to an unphysical
value of z = 1000σz = 10 m in order to show the saturation effect (3.16). Of course, when the beam-beam
parameters become large, the first-order approximation used in this note breaks down and the results become
unreliable.

The physical interpretation for the large values of the vertical beam-beam parameter of the positrons
at the head or tail of the bunch is that these particles sample, on the average, a much larger vertical beta-
function than those at the bunch center. This is because the LER vertical beta-function is quite small at the
interaction point, β∗y+ = 1.5 cm, so that it grows quickly away from this point. The almost linear increase of
ξy+ for z ∼> 5σz+, which is seen in Fig. 5, can also be easily understood from from Eq. (3.4). The integrand
is effectively concentrated in the neighborhood of s = z/2 with a width of a few σz−. In the region z∼> 5σz+
the dominant variation of the integrand comes from β∗y+ and β∗y− so that

ξy+(z) ∝
∫
ds

βy+(s)√
βy−(s)

e−(2s−z)2/2σ2
z− ' βy+(z/2)√

βy−(z/2)
(4.3)

where we have used the method of steepest descent, which is quite a reasonable approximation in this
parameter regime. The numerical factors can be more easily collected from Eq. (3.6). The corresponding
calculation yields

ξy+(z) ' ξ0y+ ×
1 + u2

0/u
2
1√

1 + u2
0/u

2
2
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' ξ0y+ ×
u0u2

u2
1

= ξ0y+ ×
zβ∗y−
2β∗2y+

= 0.02 z [cm] (4.4)

where we have used the definitions (3.7) and have substituted nominal values from Table 1. The numerical
factor of 0.02 turns out to be in very good agreement with what is inferred from the exact result plotted in
Fig. 5.

5 Off–IP collisions.

Because of possible RF jitter or phasing errors, the bunches may not collide exactly at the nominal IP
(defined by the common waist of the beta-functions). Thus we assume that the bunch centers are displaced
by amounts ∆± from their ideal values (see Fig. 4),

e+ bunch center: s+ = ct+ ∆+

e− bunch center: s− = −ct+ ∆−
(5.1)

where s = 0 defines the location of the nominal IP. The actual collision point, which we call sc, is found by
setting s+ = s−, hence

sc = 1
2 (∆+ + ∆−) (5.2)

with the implicit convention that sc > 0 means downstream of the IP in the direction of the e+ beam.
The luminosity formula, Eq. (2.2), is replaced by (for v+ = v− = c),

L = 2c

∫
dtdxdyds ρ+(x, y, s− ct−∆+)ρ−(x, y, s+ ct−∆−) (5.3)

Manipulations similar to the previous ones yield the reduction factor

R(ux, uy, uc) =

∞∫

−∞

du√
π

exp(−(u− uc)2)√
(1 + u2/u2

x)(1 + u2/u2
y)

(5.4)

where

u2
c =

2s2
c

σ2
z+ + σ2

z−
(5.5)

and ux, uy are the same as before, Eq. (2.8). The ideal case (collision exactly at the IP) corresponds to
uc = 0. A few properties of the reduction factor are:

R(ux, uy, uc) = R(ux, uy,−uc) (5.6a)

R(ux, uy, uc) < R(ux, uy, 0) for uc 6= 0 (5.6b)

R(ux, uy, uc) ∼
uxuy
u2
c

for uc À ux, uy (5.6c)

For APIARY 6.3-D parameters, Fig. 7 shows R(ux, uy, uc) plotted vs. sc. It is seen that the reduction in
luminosity is quite smooth and not very sensitive to the offset for reasonable values one might expect for sc
(this assumes, of course, that there is no accompanying beam blowup).

The beam-beam parameters are also computed as before. The electric field produced by the electron
bunch, Eq. (3.1), is now proportional to exp(−(s+ct−∆−)2/2σ2

z−), and the force on the positron, Eq. (3.2),
is evaluated at s = ct + z + ∆+. The net result is that the expression for the beam-beam parameter is the
same as the one for the ideal (on–IP) case, Eq. (3.4), except that the argument is z + 2sc instead of z,

ξ(z)off−IP = ξ(z + 2sc)on−IP (5.7)

for all four beam-beam parameters. This property is also true, of course, of the aggravating factors. Fig. 8
shows the vertical ξ of a positron displaced longitudinally by z from the center of its own bunch when the
collision point is offset by 0 and ±1 cm from the nominal IP, for APIARY 6.3–D parameters.
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6 The electromagnetic pinching effect.

The calculations of the luminosity reduction factor and the beam-beam aggravating factors presented in this
note are purely geometrical in nature. In other words, the bunch distributions are asssumed unchanged
during the collision except for the variation of the beta-functions. In practice, of course, the electromagnetic
forces experienced by the particles distort the bunch shape at least to some extent.

In the limit of weak beams, the geometrical results can be thought of as a first order approximation to
the full-fledged dynamics. In this section we try to ascertain the magnitude of the pinching effect for the
proposed SLAC/LBL/LLNL B factory. We argue that, indeed, the geometrical results are a reasonably good
approximation to the full dynamics.

Our qualitative argument is based on results by Chen, and by Chen and Yokoya [7]. These come from
multiparticle simulations for single-pass, symmetric, beam collisions. For flat bunches that are uniform in
x and gaussian in y and s, Chen concludes that the enhancement of the luminosity is represented, to an
accuracy of ±10%, by the empirical fit

HD ≡
L
L0

=

{
1 +D1/4

(
D3

1 +D3

)[
ln(
√
D + 1) + 2 ln

(
0.8

A

)]}1/3

(6.1)

where
A =

σz
β∗y
, D = 4πξy

σz
β∗y

(6.2)

Roughly speaking, in this result the parameter A describes geometrical effects while D describes electro-
magnetic effects. One of the assumptions made in the simulations is that the parameters are such that the
purely geometrical effect is small. This assumption is reflected in (6.1): if we set D = 0 we obtain HD = 1
for all values of A.

Furthermore it should be remembered that these simulations are for single-pass, not repetitive, collisions.
Therefore, when applying these results to any circular collider, a potentially important dependence on the
tune of the machine may be missed. Nevertheless, the above formula should give an estimate of the relative
importance of the electromagnetic effects. Also, the beam symmetry assumed in these simulations does not
hold true for the SLAC/LBL/LLNL B factory; we conjecture, however, that, in order to get a qualitative
estimate of the effect, we may replace A by its natural generalization, A → u−1

y = 0.53, so that D = 0.20.
For these values we obtain from (6.1)

HD = 0.998 (6.3)

which means that there is essentially no deviation from the nominal value. Therefore, to within 10%, we
conclude that the geometrical reduction in luminosity is compensated by the pinching effect. This result is
consistent with the multiparticle tracking simulation results for the B factory, which show that there is little
deviation from nominal behavior for nominal values of the parameters, if parasitic collisions are ignored [1].

This result may also be interpreted by stating that the pinching effect alters the beta-function at the
interaction point, effectively replacing β∗ by a smaller, “dynamical,” beta-function. If this interpretation is
correct, it implies that the pinching effect tends to make the the beam-beam aggravating factors larger than
those already calculated from the purely geometrical hourglass effect.

7 Conclusions.

We have presented the formulas for the hourglass luminosity reduction factor and beam-beam aggravating
factors in the general asymmetric case. As in the symmetric case, the reduction factor is, roughly speaking, a
sensitive function of β∗/σz. Unlike the symmetric case, however, the luminosity reduction factor depends on
the transverse bunch sizes in addition to the bunch lengths and beta-functions. In specific instances of flat-
beam or round-beam designs, the formulas become expressible in terms of special functions. The asymmetric
formulas reduce smoothly to those corresponding to the symmetric case, and there is no qualitative difference
between these two cases.
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A numerical application to the SLAC/LBL/LLNL B factory shows a 5.5% geometrical reduction of the
luminosity and a 9.3% geometrical enhancement of the central positron’s ξy+ relative to the nominal values.
If the pairwise equality of the transverse beam sizes did not hold, which is a generic consequence of the
dynamics, the luminosity reduction would be slightly greater. For example, if the vertical size of the LER
beam were twice its nominal value (which is a pessimistic possibility), the luminosity reduction would be 7%
instead of 5.5%, while the beam-beam aggravating parameters would remain essentially unaltered (of course,
the luminosity would be ∼ 40% smaller than the nominal value, even without consideration of the hourglass
effect, simply because of the beam blowup).

The positrons at the head or tail of the bunch have a substantially higher ξy+ than the central positron
due to the fact that they sample, on average, a much higher β∗y+ during the collision process. Positrons
with x ' y ' 0 and |z| > 6σz have ξy+ > 0.1; we conjecture that these particles will be quickly lost. It
should be remembered, however, that, in reality, synchrotron motion implies that z oscillates about 0 with
a period ∼ 25 turns. Thus any given particle will have a time-averaged ξ much smaller than the above
values. In all calculations presented here we have set z = constant, so that our conclusions may be unduly
pessimistic. Furthermore, particles with x 6= 0 or y 6= 0 have smaller ξ-parameters than those on axis. All
multiparticle tracking simulations carried out to this date (8/91) for the SLAC/LBL/LLNL B factory have
aimed at the study of the beam core only: in all cases particles have been confined to |z| ≤ 2σz. Therefore
these simulations are not sensitive to the behavior of large-|z| particles. In any case, Eq. (4.4) shows a simple
way to decrease the ξ parameters at the head or tail of the bunch, by appropriately balancing β∗y+ and β∗y−.

If the bunches collide at a point longitudinally displaced from the nominal IP, the luminosity is smoothly
reduced from the ideal case. The beam-beam parameters at the head or tail of the bunch, however, are
sensitive to this offset, and can easily become quite large.

We estimate the electromagnetic pinching effect to be small, since it modifies the results of the geometrical
calculations by ∼ ±10%. It is probably beneficial for the luminosity, and it is probably detrimental for the
beam-beam parameters.

For all these reasons one can say that, generally speaking, the hourglass effect has a greater influence on
the dynamics of the bunch tails than on the the dynamics of the core, at least for a range of parameters like
those of presently proposed B factories. Therefore this effect is more important for the beam lifetime than
for the instantaneous luminosity.
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Figure 1: The reduction factor, Eq. (2.7), plotted vs. uy for various values of ux.
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Figure 2: Luminosity reduction factor for flat beams. Eq. (2.12) (solid line) is plotted vs. uy along with
its uy → 0 (dot-dash line) and uy → ∞ (dashed line) limits, Eqs. (2.13). The arrow corresponds to the
APIARY 6.3-D design of the SLAC/LBL B-factory, showing a luminosity reduction of 5.5% relative to the
nominal value.
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Figure 3: Luminosity reduction factor for round beams. Eq. (2.14) (solid line) is plotted vs. ux along with
its ux → 0 (dot-dash line) and ux →∞ (dashed line) limits, Eqs. (2.15).

Figure 4: Sketch of the two bunches just before a collision. If the offsets ∆+ and ∆− are 0, the bunch centers
reach the interaction point (IP), s = 0, simultaneously at time t = 0. A particular positron at the head of
the bunch is displaced by a distance z from the center. If the offsets ∆+ and ∆− are 6= 0, the bunches collide
away from the IP at a distance sc = (∆+ + ∆−)/2 (see Sec. 5).
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Figure 5: Vertical beam-beam parameter of the LER. The parameter ξy+ of a positron at a distance z from
the center of the bunch, obtained from Eq. (3.6), is plotted as a function of z/σz+. Nominal APIARY 6.3-D
parameters are assumed (σz+ = 1 cm).
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Figure 6: Beam-beam aggravating factors. The aggravating factors for a positron and an electron at a
distance z from the bunch center are obtained from Eq. (3.6), assuming nominal APIARY 6.3-D parameter
values (σz+ = σz− = 1 cm). The horizontal scale is extended up to an unphysically large value corresponding
to z = 10 m in order to show the mathematical saturation property, Eq. (3.16).
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Figure 7: Luminosity reduction for off-IP collisions in APIARY 6.3-D. The centers of the bunches come
together at a distance sc from the IP. The rms bunch lengths are σz+ = σz− = 1 cm. The convention is that
sc > 0 means downstream of the positron beam, but the curve is symmetric about sc = 0.
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Figure 8: ξy+(z) for off-IP collisions in APIARY 6.3-D. The vertical beam-beam parameter of a positron at
a distance z from the center of its own bunch. The head of the bunch is at z > 0, the tail at z < 0. The
centers of the e+ and e− bunches come together at a distance sc from the optical IP, where sc > 0 means
downstream of the positron bunch. The rms bunch lengths are σz+ = σz− = 1 cm. For the electron bunch,
the convention for z is reversed: z > 0 represents the tail of the bunch, z < 0 the head.
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